Posts

A Comprehensive Assessment of the Coracoid Process Dimensions in the South Indian Population Using 3D Computer Tomographic Reconstruction

Volume 8 | Issue 2 | Aug – Sep 2020 | Page: 37- 46 | Sandesh Madi S, Muthiah Muthu Magesh, Sujayendra DM, Vivek Pandey, Kiran K V Acharya


Authors: Sandesh Madi S [1], Muthiah Muthu Magesh [1], Sujayendra DM [1], Vivek Pandey [1], Kiran K V Acharya [1]

[1] Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India.

Address of Correspondence
Dr. Sandesh Madi S,
Kasturba Medical College, Manipal Academy of Higher
Education, Manipal, India.
E-mail: sandesh.madi@manipal.edu


Abstract

Background: Awareness of the accurate dimensions of the coracoid is essential for (i) coracoclavicular ligament reconstructions and (ii) coracoid transfer procedures (e.g. Latarjet) for shoulder instability. The morphometric assessment of the coracoid process using three-dimensional computer tomography (3-D CT) in the Indian population has not been previously undertaken.
Materials and Methods: The study was aimed to conduct the morphometric assessment of coracoid process using 3-D CT reconstruction in the South Indian population and to compare the gender and side differences. In addition, we compared the dimensions of the coracoid process with the findings in the previous studies performed in different races and ethnicities. We also compared the results of our study with other morphometric studies conducted in India using dry bones. From the records, the 3D CT images of the shoulder (age between 20 and 60 years) were assessed. Fractures of the coracoid or previous history of surgery involving the coracoid were excluded from the study. The dimensions of coracoid were measured on the same final images by two observers using digital calipers, and an average of their measurements was recorded. A two-tailed independent t-test was used to measure the statistical significance.
Results: A total of 187 shoulders (120 males and 67 females), 3D CT images were assessed. The average age of the study population was 30.66 ± 7.21 years. The average length of coracoid was 40.11 ± 1.36 mm. Overall dimensions of tip of coracoid was 20.56 ± 1.67 mm (length), 13.01 ± 0.97 mm (width), and 9.24 ± 1.05mm (height). Overall dimensions of base of coracoid were 20.45 ± 2.26 mm (length) and 14.5 ± 0.86 mm (height). All the measurements were larger in males (P < 0.05). The side difference for all measurements was not statistically significant. The mean coracoid width was significantly larger than the mean coracoid thickness (P < 0.00001).
Conclusion: This study provides a comprehensive baseline data on the morphometry of the coracoid process in the South Indian population that will be valuable in pre-operative planning for the shoulder surgeons.
Keywords: Coracoid, Three-dimensional computer tomography scan, Tip, Base, Scapula, Shoulder.


References

1. Latarjet M. Technic of coracoid preglenoid arthroereisis in the treatment of recurrent dislocation of the shoulder. Lyon Chir 1958;54:604-7.
2. Gumina S, Postacchini F, Orsina L, Cinotti G. The morphometry of the coracoid process-its aetiologic role in subcoracoid impingement syndrome. Int Orthop 1999;23:198-201.
3. Coskun N, Karaali K, Cevikol C, Demirel BM, Sindel M. Anatomical basics and variations of the scapula in Turkish adults. Saudi Med J 2006;27:1320-5.
4. Salzmann GM, Paul J, Sandmann GH, Imhoff AB, Schöttle PB. The coracoidal insertion of the coracoclavicular ligaments: An anatomic study. Am J Sports Med 2008;36:2392-7.
5. Rios CG, Arciero RA, Mazzocca AD. Anatomy of the clavicle and coracoid process for reconstruction of the coracoclavicular ligaments. Am J Sports Med 2007;35:811-7.
6. Armitage MS, Elkinson I, Giles JW, Athwal GS. An anatomic, computed tomographic assessment of the coracoid process with special reference to the congruent-arc latarjet procedure. Arthroscopy 2011;27:1485-9.
7. Dolan CM, Hariri S, Hart ND, McAdams TR. An anatomic study of the coracoid process as it relates to bone transfer procedures. J Shoulder Elbow Surg 2011;20:497-501.
8. Coale RM, Hollister SJ, Dines JS, Allen AA, Bedi A. Anatomic considerations of transclavicular-transcoracoid drilling for coracoclavicular ligament reconstruction. J Shoulder Elbow Surg 2013;22:137-44.
9. Terra BB, Ejnisman B, De Figueiredo EA, Cohen C, Monteiro GC, De Castro Pochini A, et al. Anatomic study of the coracoid process: Safety margin and practical implications. Arthroscopy 2013;29:25-30.
10. Imma II, Nizlan MN, Ezamin AR, Yusoff S, Shukur MH. Coracoid process morphology using 3D-CT imaging in a Malaysian population. Malays Orthop J 2017;11:30-5.
11. Bueno RS, Ikemoto RY, Nascimento LG, Almeida LH, Strose E, Murachovsky J. Correlation of coracoid thickness and glenoid width: An anatomic morphometric analysis. Am J Sports Med 2012;40:1664-7.
12. Cho BP. Articular facets of the coracoclavicular joint in Koreans. Acta Anat (Basel) 1998;163:56-62.
13. Gallino M, Santamaria E, Doro T. Anthropometry of the scapula: Clinical and surgical considerations. J Shoulder Elbow Surg 1998;7:284-91.
14. Boutsiadis A, Bampis I, Swan J, Barth J. Best implant choice for coracoid graft fixation during the latarjet procedure depends on patients’ morphometric considerations. J Exp Orthop 2020;7:15.
15. Piyawinijwong S, Sirisathira N, Chuncharunee A. The scapula: Osseous dimensions and gender dimorphism in Thais. Siriraj Hosp Gaz 2004;56:356-65.
16. Von Schroeder HP, Kuiper SD, Botte MJ. Osseous anatomy of the scapula. Clin Orthop Relat Res 2001;383:131-9.
17. Cirpan S, Yonguc GN, Güvençer M. Morphometric analysis of coracoid process and glenoid cavity in terms of surgical approaches: An anatomical study. Kocaeli Med J 2018;7:131-7.
18. Lian J, Dong L, Zhao Y, Sun J, Zhang W, Gao C. Anatomical study of the coracoid process in Mongolian male cadavers using the latarjet procedure. J Orthop Surg Res 2016;11:126.
19. Shibata T, Izaki T, Miyake S, Doi N, Arashiro Y, Shibata Y, et al. Predictors of safety margin for coracoid transfer: A cadaveric morphometric analysis. J Orthop Surg Res 2019;14:10-5.
20. Knapik DM, Cumsky J, Tanenbaum JE, Voos JE, Gillespie RJ. Differences in coracoid and glenoid dimensions based on sex, race, and age: Implications for use of the latarjet technique in glenoid reconstruction. HSS J 2018;14:238-44.
21. Fathi M, Cheah PS, Ahmad U, Nasir MN, San AA, Rahim EA, et al. Anatomic variation in morphometry of human coracoid process among Asian population. Biomed Res Int 2017;2017:6307019.
22. Jia Y, He N, Liu J, Zhang G, Zhou J, Wu D, et al. Morphometric analysis of the coracoid process and glenoid width: A 3D-CT study. J Orthop Surg Res 2020;15:1-7.
23. Khan R, Satyapal KS, Lazarus L, Naidoo N. An anthropometric evaluation of the scapula, with emphasis on the coracoid process and glenoid fossa in a South African population. Heliyon 2020;6:e03107.
24. Lo IK, Burkhart SS, Parten PM. Surgery about the coracoid: Neurovascular structures at risk. Arthroscopy 2004;20:591-5.
25. Chavan SR, Bhoir MM, Verma S. A study of anthropometric measurements of the human scapula in Maharashtra, India. Int J Anat 2017;1:23-6.
26. Rajan S, Ritika S, K.J S, Kumar S, Tripta S. Role of coracoid morphometry in subcoracoid impingement syndrome. Internet J Orthop Surg 2014;22:1-7.
27. Mehta V. Osteometric assessment of coracoid process of scapula-clinical implications. J Surg Acad 2018;8:3-10.
28. Jagiasi J, Yeotiwad G, Bhoir M, Sahu D. Anatomic measurements of the coracoid and its implication in the latarjet procedure. Int J Orthop Sci 2017;3:533-5.
29. Nayak G, Panda SK, Chinara PK. Acromion, coracoid and glenoid processes of scapula: An anatomical study. Int J Res Med Sci 2020;8:570.
30. Lingamdenne PE, Marapaka P. Measurement and analysis of anthropometric measurements of the human scapula in Telangana region, India. Int J Anat Res 2016;4:2677-83.
31. Kalra S, Thamke S, Khandelwal A, Khorwal G. Morphometric analysis and surgical anatomy of coracoid process and glenoid cavity. J Anat Soc India 2016;65:114-7.
32. Parmar T, Geethanjali BS. A study of anthropometric measurement of human dry scapula and its clinical importance. Sch Int J Anat Physiol 2019;8618:187-93.
33. Verma U, Singroha R, Malik P, Rathee SK. A study on morphometry of coracoid process of scapula in North Indian population. Int J Res Med Sci 2017;5:4970.
34. Gregori M, Eichelberger L, Gahleitner C, Hajdu S, Pretterklieber M. Relationship between the thickness of the coracoid process and latarjet graft positioning-an anatomical study on 70 embalmed scapulae. J Clin Med 2020;9:207.
35. Eyres KS, Brooks A, Stanley D. Fractures of the coracoid process. J Bone Joint Surg Br 1995;77:425-8.
36. Ljungquist KL, Butler RB, Griesser MJ, Bishop JY. Prediction of coracoid thickness using a glenoid width-based model: Implications for bone reconstruction procedures in chronic anterior shoulder instability. J Shoulder Elbow Surg 2012;21:815-21.
37. Bonazza NA, Liu G, Leslie DL, Dhawan A. Trends in surgical management of shoulder instability. Orthop J Sports Med 2017;5:1-7.
38. Zhang AL, Montgomery SR, Ngo SS, Hame SL, Wang JC, Gamradt SC. Arthroscopic versus open shoulder stabilization: Current practice patterns in the United States. Arthroscopy 2014;30:436-43.
39. Beer JF, Roberts C. Glenoid bone defects-open latarjet with congruent arc modification. Orthop Clin North Am 2010;41:407-15.


How to Cite this article: Madi SS, Magesh MM, Sujayendra DM, Pandey V, Acharya KKV | A Comprehensive Assessment of the Coracoid Process Dimensions in the South Indian Population Using 3D Computer Tomographic Reconstruction | Journal of Karnataka Orthopaedic Association | August-September 2020; 8(2): 37-45.

                                          (Abstract    Full Text HTML)      (Download PDF)


Long Head of Biceps Tendon: Current Concepts and Controversie

Volume 6 | Issue 2 | May-Aug 2018 | Page 3-6 | Sandesh Madi S, Vivek Pandey, Kiran Acharya, Prajwal Mane.


Authors: Sandesh Madi S [1], Vivek Pandey [1], Kiran Acharya [1], Prajwal Mane [1].

[1] Department of Orthopaedics, Kasturba Hospital, Manipal Academy of Higher Education, Manipal.

Address of Correspondence
Dr. Sandesh Madi S,

Department of Orthopaedics,

Kasturba Hospital, Manipal Academy of Higher Education, Manipal.

Email: sandesh.madi@gmail.com


Abstract

The peculiar anatomical location of the long head of the biceps tendon (LHBT) and pathological changes with or without rotator cuff pathology has generated much interest for a long time which has subsequently resulted in contradictory results and controversies. This review highlights the evolution of changing concepts in understanding the role of LHBT in normal function, its pathology, clinical presentation,and management. The scope for future clinical studies in Biceps pathology is also briefly outlined.

Keywords: Biceps, tenotomy, tenodesis, shoulder, arthroscopy.


References

1. Kukkonen J, Rantakokko J, Virolainen P, Aärimaa V. The effect of biceps procedure on the outcome of rotator cuff reconstruction. ISRN Orthop 2013;2013:840965.

2. Khazzam M, George MS, Churchill RS, Kuhn JE. Disorders of the long head of biceps tendon. J Shoulder Elbow Surg 2012;21:13645.

3. Ahrens PM, Boileau P. The long head of biceps and associated tendinopathy. J Bone Joint Surg Br 2007;89:1001-9.

4. Cheng NM, Pan WR, Vally F, Le Roux CM, Richardson MD. The arterial supply of the long head of biceps tendon: Anatomical study with implications for tendon rupture. Clin Anat 2010;23:683-92.

5. Krupp RJ, Kevern MA, Gaines MD, Kotara S, Singleton SB. Long head of the biceps tendon pain: Differential diagnosis and treatment. J Orthop Sports Phys Ther 2009;39:55-70.

6. Ryu JH, Pedowitz RA. Rehabilitation of biceps tendon disorders in athletes. Clin Sports Med 2010;29:229-46, vii-viii.

7. Pandey V, van Laarhoven SN, Arora G, Rao S. Bifurcated intraarticular long head of biceps tendon. Indian J Orthop 2014;48:432-4.

8. Dierickx C, Ceccarelli E, Conti M, Vanlommel J, Castagna A. Variations of the intra-articular portion of the long head of the biceps tendon: A classification of embryologically explained variations. J Shoulder Elbow Surg 2009;18:556-65.

9. Lippman RK. Bicipital tenosynovitis. N Y State J M 1944:2235-41.

10. Kumar VP, Satku K, Balasubramaniam P. The role of the long head of biceps brachii in the stabilization of the head of the humerus. Clin Orthop Relat Res 1989;244:172-5.

11. Pandey V, Vijayan S, Hafiz N, Deepika N, Acharya K. Does congenital absence of the long head of biceps tendon render shoulder unstable leading to bony bankart and posterior labral tear: A case report and review of the literature. J Musculoskelet Res 2016;19:1672001.

12. Abboud JA, Bartolozzi AR, Widmer BJ, DeMola PM. Bicipital groove morphology on MRI has no correlation to intra-articular biceps tendon pathology. J Shoulder Elbow Surg 2010;19:790-4.

13. Takahashi N, Sugaya H, Matsumoto M, Miyauchi H, Matsuki K, Tokai M, et al. Progression of degenerative changes of the biceps tendon after successful rotator cuff repair. J Shoulder Elbow Surg 2017;26:424-9.

14. Holtby R, Razmjou H. Accuracy of the speed’s and yergason’s tests in detecting biceps pathology and SLAP lesions: Comparison with arthroscopic findings. Arthroscopy 2004;20:231-6.

15. Hedtmann A, Fett H. Ultrasound diagnosis of the rotator cuff. Orthopade 2002;31:236-46.

16. Lafosse L, Reiland Y, Baier GP, Toussaint B, Jost B. Anterior and posterior instability of the long head of the biceps tendon in rotator cuff tears: A new classification based on arthroscopic observations. Arthroscopy 2007;23:73-80.

17. Dubrow SA, Streit JJ, Shishani Y, Robbin MR, Gobezie R. Diagnostic accuracy in detecting tears in the proximal biceps tendon using standard nonenhancing shoulder MRI. Open Access J Sports Med 2014;5:81-7.

18. Armstrong A, Teefey SA, Wu T, Clark AM, Middleton WD, Yamaguchi K, et al. The efficacy of ultrasound in the diagnosis of long head of the biceps tendon pathology. J Shoulder Elbow Surg 2006;15:7-11.

19. Creech MJ, Yeung M, Denkers M, Simunovic N, Athwal GS, Ayeni OR, et al. Surgical indications for long head biceps tenodesis: A systematic review. Knee Surg Sports Traumatol Arthrosc 2016;24:2156-66.

20. Patte D, Walch G, Boileau P. Luxation de la longue portion du biceps et rapture de la cauffe des rotateurs. Revue de Chirurgie Orthopedique 1990;76:95.

21. Bradbury T, Dunn WR, Kuhn JE. Preventing the popeye deformity after release of the long head of the biceps tendon: An alternative technique and biomechanical evaluation. Arthroscopy 2008;24:1099-102.

22. Kane P, Hsaio P, Tucker B, Freedman KB. Open subpectoral biceps tenodesis: Reliable treatment for all biceps tendon pathology. Orthopedics 2015;38:37-41.

23. Werner BC, Brockmeier SF, Gwathmey FW. Trends in long head biceps tenodesis. Am J Sports Med 2015;43:570-8.

24. Abraham VT, Tan BH, Kumar VP. Systematic review of biceps tenodesis: Arthroscopic versus open. Arthroscopy 2016;32:365-71.

25. Gialanella B, Grossetti F, Mazza M, Danna L, Comini L. Functional recovery after rotator cuff repair: The role of biceps surgery. J Sport Rehabil 2018;27:83-93.

26. Chen CH, Hsu KY, Chen WJ, Shih CH. Incidence and severity of biceps long head tendon lesion in patients with complete rotator cuff tears. J Trauma 2005;58:1189-93.

27. Peltz CD, Hsu JE, Zgonis MH, Trasolini NA, Glaser DL, Soslowsky LJ, et al. Biceps tendon properties worsen initially but improve over time following rotator cuff tears in a rat model. J Orthop Res 2011;29:874-9.

28. Moon YL, Ha SH, Lee YK, Park YK. Comparative studies of platelet-rich plasma (PRP) and prolotherapy for proximal biceps tendinitis. Clin Shoulder Elbow 2011;14:153-8.


How to Cite this article: Madi S S, Pandey V, Acharya K, Mane P. Long Head of Biceps Tendon: Current Concepts and Controversies. J Kar Orth Assoc. May-Aug 2018; 6(2): 3-6.

                                          (Abstract    Full Text HTML)      (Download PDF)