Posts

Technologies in Total Knee Arthroplasty

Vol. 11 | Issue 1 | January-February 2023 | Page: 05-12 | Ravikumar Mukartihal, Rajdeep Das, Chandan S, Vikram G K Bhat, Balakrishna Nallabolu, Sreedhish K, Bharath Krishna S, Sharan S Patil

DOI: https://doi.org/10.13107/jkoa.2023.v11i01.057


Authors: Ravikumar Mukartihal [1], Rajdeep Das [1], Chandan S [1], Vikram G K Bhat [1], Balakrishna Nallabolu [1], Sreedhish K [1], Bharath Krishna S [1], Sharan S Patil [1]

[1] Department of Trauma and Orthopaedics, Sparsh Hospital for Advanced Surgeries, Bengaluru, India.

Address of Correspondence

Dr. Ravikumar Mukartihal
Consultant Orthopaedic and Robotic Joint Replacement Surgeon, Department of Trauma and Orthopaedics, Sparsh Hospital for Advanced Surgeries, Bengaluru, India.
E-mail: ravikumarmukartihal@gmail.com


Abstract


Total Knee Arthroplasty (TKA) is a very impelling treatment for severe osteoarthritis. But, prosthesis longevity along with clinical and functional outcome of patients are intricately related to proper alignment and position of the prosthesis and how perfectly the artificial joint can mimic the native knee anatomy and kinematics. To minimize outliers and improve accuracy, precision and patients’ outcome, promising new technologies have been developed in knee arthroplasty. TKA is advancing by leaps and bounds with the advent and introduction and application of technologies in its domain. The aim of this article is to put up and brief about the technologies in TKA, their concepts, advantages, and limitations.
Keywords: Total knee arthroplasty, Knee arthroplasty, Total knee replacement, Osteoarthritis, Technology, Biomedical Technology, Robot-assisted surgery, Artificial intelligence, Augmented reality


References


1. Kayani B, Konan S, Ayuob A, Onochie E, Al-Jabri T, Haddad FS. Robotic technology in total knee arthroplasty: a systematic review. EFORT Open Reviews. 2019 Oct 1;4(10):611-7.
2. Berend ME, Ritter MA, Meding JB, Faris PM, Keating EM, Redelman R, Faris GW, Davis KE. The Chetranjan Ranawat Award: Tibial Component Failure Mechanisms in Total Knee Arthroplasty. Clinical Orthopaedics and Related Research (1976-2007). 2004 Nov 1;428:26-34.
3. Lewinnek GE, Lewis JL, Tarr RI, Compere CL, Zimmerman JR. Dislocations after total hip-replacement arthroplasties. J Bone Joint Surg Am. 1978 Mar 1;60(2):217-20.
4. Wasielewski RC, Galante JO, Leighty RM, Natarajan RN, Rosenberg AG. Wear patterns on retrieved polyethylene tibial inserts and their relationship to technical considerations during total knee arthroplasty. Clinical Orthopaedics and Related Research (1976-2007). 1994 Feb 1;299:31-43.
5. Dorr LD. CORR Insights®: does robotic-assisted TKA result in better outcome scores or long-term survivorship than conventional TKA? A randomized, controlled trial. Clinical Orthopaedics and Related Research. 2020 Feb;478(2):276.
6. Waddell BS, Carroll K, Jerabek S. Technology in arthroplasty: are we improving value?. Current Reviews in Musculoskeletal Medicine. 2017 Sep;10(3):378-87.
7. Batailler C, Swan J, Sappey Marinier E, Servien E, Lustig S. New technologies in knee arthroplasty: current concepts. Journal of Clinical Medicine. 2020 Dec 25;10(1):47.
8. León-Muñoz VJ, Martínez-Martínez F, López-López M, Santonja- Medina F. Patient-specific instrumentation in total knee arthroplasty. Expert Review of Medical Devices. 2019 Jul 3;16(7):555-67.
9. Frye BM, Najim AA, Adams JB, Berend KR, Lombardi Jr AV. MRI is more accurate than CT for patient-specific total knee arthroplasty. The knee. 2015 Dec 1;22(6):609-12.
10. Abdel MP, Parratte S, Blanc G, Ollivier M, Pomero V, Viehweger E, Argenson JN. No benefit of patient-specific instrumentation in TKA on functional and gait outcomes: a randomized clinical trial. Clinical Orthopaedics and Related Research®. 2014 Aug;472(8):2468-76.
11. Abane L, Anract P, Boisgard S, Descamps S, Courpied JP, Hamadouche M. A comparison of patient-specific and conventional instrumentation for total knee arthroplasty: a multicentre randomised controlled trial. The bone & joint journal. 2015 Jan;97(1):56-63.
12. Vundelinckx BJ, Bruckers L, De Mulder K, De Schepper J, Van Esbroeck G. Functional and radiographic short-term outcome evaluation of the Visionaire system, a patient-matched instrumentation system for total knee arthroplasty. The Journal of arthroplasty. 2013 Jun 1;28(6):964-70.
13. Chen JY, Chin PL, Tay DK, Chia SL, Lo NN, Yeo SJ. Functional outcome and quality of life after patient-specific instrumentation in total knee arthroplasty. The Journal of arthroplasty. 2015 Oct 1;30(10):1724-8.
14. Bonnin MP, Schmidt A, Basiglini L, Bossard N, Dantony E. Mediolateral oversizing influences pain, function, and flexion after TKA. Knee Surgery, Sports Traumatology, Arthroscopy. 2013 Oct;21(10):2314-24.
15. Mahoney OM, Kinsey T. Overhang of the femoral component in total knee arthroplasty: risk factors and clinical consequences. JBJS. 2010 May 1;92(5):1115-21.
16. Bonnin MP, Beckers L, Leon A, Chauveau J, Müller JH, Tibesku CO, Aït-Si-Selmi T. Custom total knee arthroplasty facilitates restoration of constitutional coronal alignment. Knee Surgery, Sports Traumatology, Arthroscopy. 2020 Jul 17:1-2.
17. Arbab D, Reimann P, Brucker M, Bouillon B, Lüring C. Alignment in total knee arthroplasty—A comparison of patient-specific implants with the conventional technique. The Knee. 2018 Oct 1;25(5):882-7.
18. Levengood GA, Dupee J. Accuracy of coronal plane mechanical alignment in a customized, individually made total knee replacement with patient-specific instrumentation. The journal of knee surgery. 2018 Sep;31(08):792-6.
19. Schroeder L, Martin G. In vivo tibial fit and rotational analysis of a customized, patient-specific TKA versus off-the-shelf TKA. The Journal of Knee Surgery. 2019 Jun;32(06):499-505.
20. Reimann P, Brucker M, Arbab D, Lüring C. Patient satisfaction-A comparison between patient-specific implants and conventional total knee arthroplasty. Journal of Orthopaedics. 2019 May 1;16(3):273-7.
21. Schwarzkopf R, Brodsky M, Garcia GA, Gomoll AH. Surgical and functional outcomes in patients undergoing total knee replacement with patient-specific implants compared with “off-the-shelf” implants. Orthopaedic journal of sports medicine. 2015 Jun 24;3(7):2325967115590379.
22. White PB, Ranawat AS. Patient-specific total knees demonstrate a higher manipulation rate compared to “off-the-shelf implants”. The Journal of arthroplasty. 2016 Jan 1;31(1):107-11.
23. Mihalko WM, Saleh KJ, Krackow KA, Whiteside LA. Soft-tissue balancing during total knee arthroplasty in the varus knee. JAAOSJournal of the American Academy of Orthopaedic Surgeons. 2009 Dec 1;17(12):766-74.
24. Nagai K, Muratsu H, Takeoka Y, Tsubosaka M, Kuroda R, Matsumoto T. The influence of joint distraction force on the soft tissue balance using modified gap-balancing technique in posterior stabilized total knee arthroplasty. The Journal of Arthroplasty. 2017 Oct 1;32(10):2995-9.
25. Lee SY, Lim HC, Jang KM, Bae JH. What factors are associated with femoral component internal rotation in TKA using the gap balancing technique? Clinical Orthopaedics and RelatedResearch®. 2017 Aug;475(8):1999-2010.
26. Ferreira MC, Franciozi CE, Kubota MS, Priore RD, Ingham SJ,Abdalla RJ. Is the use of spreaders an accurate method for ligament balancing? The Journal of Arthroplasty. 2017 Jul 1;32(7):2262-7.
27. Kim SH, Lim JW, Jung HJ, Lee HJ. Influence of soft tissue balancing and distal femoral resection on flexion contracture in navigated total knee arthroplasty. Knee Surgery, Sports Traumatology, Arthroscopy. 2017 Nov;25(11):3501-7.
28. Heesterbeek PJ, Haffner N, Wymenga AB, Stifter J, Ritschl P. Patient-related factors influence stiffness of the soft tissue complex during intraoperative gap balancing in cruciate-retaining total knee arthroplasty. Knee Surgery, Sports Traumatology, Arthroscopy. 2017 Sep;25(9):2760-8.
29. Wyss TF, Schuster AJ, Münger P, Pfluger D, Wehrli U. Does total knee joint replacement with the soft tissue balancing surgical technique maintain the natural joint line? Archives of Orthopaedic and Trauma Surgery. 2006 Sep;126(7):480-6.
30. Elmallah RK, Mistry JB, Cherian JJ, Chughtai M, Bhave A, Roche MW, Mont MA. Can we really “feel” a balanced total knee arthroplasty? The Journal of Arthroplasty. 2016 Sep 1;31(9):102-5.
31. Nodzo SR, Franceschini V, Della Valle AG. Intraoperative load sensing variability during cemented, posterior-stabilized total knee arthroplasty. The Journal of Arthroplasty. 2017 Jan 1;32(1):66-70.
32. Ghirardelli S, Bala A, Peretti G, Antonini G, Indelli PF. Intraoperative sensing technology to achieve balance in primary total knee arthroplasty: a review of the literature. JBJS reviews. 2019 Oct 1;7(10):e4.
33. Iyengar KP, Gowers BT, Jain VK, Ahluwalia RS, Botchu R, Vaishya R. Smart sensor implant technology in total knee arthroplasty. Journal of clinical orthopaedics and trauma. 2021 Nov 1;22:101605.
34. Gustke KA, Golladay GJ, Roche MW, Elson LC, Anderson CR. A new method for defining balance: promising short-term clinical outcomes of sensor-guided TKA. The Journal of arthroplasty. 2014 May 1;29(5):955-60.
35. Chow JC, Breslauer L. The use of intraoperative sensors significantly increases the patient-reported rate of improvement in primary total knee arthroplasty. Orthopedics. 2017 Jul 1;40(4):e648-51.
36. Geller JA, Lakra A, Murtaugh T. The use of electronic sensor device to augment ligament balancing leads to a lower rate of arthrofibrosis after total knee arthroplasty. The Journal of Arthroplasty. 2017 May 1;32(5):1502-4.
37. Lee DH, Park JH, Song DI, Padhy D, Jeong WK, Han SB. Accuracy of soft tissue balancing in TKA: comparison between navigation assisted gap balancing and conventional measured resection. Knee Surgery, Sports Traumatology, Arthroscopy. 2010 Mar;18(3):381- 7.
38. Rhee SJ, Kim HJ, Lee CR, Kim CW, Gwak HC, Kim JH. A comparison of long-term outcomes of computer-navigated and conventional total knee arthroplasty: a meta-analysis of randomized controlled trials. JBJS. 2019 Oct 16;101(20):1875-85.
39. Ek ET, Dowsey MM, Tse LF, Riazi A, Love BR, Stoney JD, Choong PF. Comparison of functional and radiological outcomes after computer-assisted versus conventional total knee arthroplasty: a matched-control retrospective study. Journal of Orthopaedic Surgery. 2008 Aug;16(2):192-6.
40. Jones CW, Jerabek SA. Current role of computer navigation in total knee arthroplasty. The Journal of arthroplasty. 2018 Jul 1;33(7):1989-93.
41. Budhiparama NC, Lumban-Gaol I, Ifran NN, Parratte S, Nelissen R. Does accelerometer-based navigation have any clinical benefit compared with conventional TKA? A systematic review. Clinical orthopaedics and related research. 2019 Sep;477(9):2017.
42. Camarda L, D’Arienzo A, Morello S, Peri G, Valentino B, D’Arienzo M. Patient-specific instrumentation for total knee arthroplasty: a literature review. Musculoskeletal surgery. 2015 Apr;99(1):11-8.
43. Banerjee S, Cherian JJ, Elmallah RK, Pierce TP, Jauregui JJ, Mont MA. Robot-assisted total hip arthroplasty. Expert review of medical devices. 2016 Jan 2;13(1):47-56.
44. Chen X, Deng S, Sun ML, He R. Robotic arm-assisted arthroplasty: The latest developments. Chinese Journal of Traumatology. 2022 May 1;25(3):125-31.
45. Jacofsky DJ, Allen M. Robotics in arthroplasty: a comprehensive review. The Journal of arthroplasty. 2016 Oct 1;31(10):2353-63.
46. Bagaria V, Sadigale OS, Pawar PP, Bashyal RK, Achalare A, Poduval M. Robotic-assisted knee arthroplasty (RAKA): the technique, the technology and the transition. Indian Journal of Orthopaedics. 2020 Nov;54(6):745-56.
47. Ponzio DY, Lonner JH. Preoperative mapping in unicompartmental knee arthroplasty using computed tomography scans is associated with radiation exposure and carries a high cost. The Journal of Arthroplasty. 2015 Jun 1;30(6):964-7.
48. Kayani B, Konan S, Huq SS, Tahmassebi J, Haddad FS. Robotic arm-assisted total knee arthroplasty has a learning curve of seven cases for integration into the surgical workflow but no learning curve effect for the accuracy of implant positioning. Knee Surgery, Sports Traumatology, Arthroscopy. 2019 Apr;27(4):1132-41.
49. Sultan AA, Samuel LT, Khlopas A, Sodhi N, Bhowmik-Stoker M, Chen A, Orozco F, Kolisek F, Mahoney O, Smith L, Malkani A. Robotic-arm assisted total knee arthroplasty more accurately restored the posterior condylar offset ratio and the Insall-Salvati Index compared to the manual technique; a cohort-matched study. Surg Technol Int. 2019 May 1;34(409):e13.
50. Liow MH, Xia Z, Wong MK, Tay KJ, Yeo SJ, Chin PL. Robot-assisted total knee arthroplasty accurately restores the joint line and mechanical axis. A prospective randomised study. The Journal of arthroplasty. 2014 Dec 1;29(12):2373-7.
51. Khlopas A, Chughtai M, Hampp EL, Scholl LY, Prieto M, Chang TC, Abbasi A, Bhowmik-Stoker M, Otto J, Jacofsky DJ, Mont MA. Robotic-Arm Assisted Total Knee Arthroplasty Demonstrated Soft Tissue Protection. Surgical technology international. 2017 Jul 1;30:441-6.
52. Abdel MP, Ledford CK, Kobic A, Taunton MJ, Hanssen AD. Contemporary failure aetiologies of the primary, posterior stabilised total knee arthroplasty. The Bone & Joint Journal. 2017 May;99(5):647-52.
53. Kutzner I, Bender A, Dymke J, Duda G, Von Roth P, Bergmann G. Mediolateral force distribution at the knee joint shifts across activities and is driven by tibiofemoral alignment. The bone & joint journal. 2017 Jun;99(6):779-87.
54. Haddad FS. Evolving techniques: the need for better technology.
The Bone & Joint Journal. 2017 Feb;99(2):145-6.
55. Siebert W, Mai S, Kober R, Heeckt PF. Technique and first clinical results of robot-assisted total knee replacement. The Knee. 2002 Sep 1;9(3):173-80.
56. Kayani B, Konan S, Tahmassebi J, Rowan FE, Haddad FS. An assessment of early functional rehabilitation and hospital discharge in conventional versus robotic-arm assisted unicompartmental knee arthroplasty: a prospective cohort study. Bone Joint J. 2019 Jan;101(1):24-33.
57. Song EK, Seon JK, Yim JH, Netravali NA, Bargar WL. Robotic-assisted TKA reduces postoperative alignment outliers and improves gap balance compared to conventional TKA. Clinical Orthopaedics and Related Research®. 2013 Jan;471(1):118-26.
58. Song EK, Seon JK, Park SJ, Jung WB, Park HW, Lee GW. Simultaneous bilateral total knee arthroplasty with robotic and conventional techniques: a prospective, randomized study. Knee Surgery, Sports Traumatology, Arthroscopy. 2011 Jul;19(7):1069- 76.
59. Liow MH, Goh GS, Wong MK, Chin PL, Tay DK, Yeo SJ. Robotic-assisted total knee arthroplasty may lead to improvement in quality of- life measures: a 2-year follow-up of a prospective randomized trial. Knee Surgery, Sports Traumatology, Arthroscopy. 2017 Sep;25(9):2942-51.
60. Yang HY, Seon JK, Shin YJ, Lim HA, Song EK. Robotic total knee arthroplasty with a cruciate-retaining implant: a 10-year follow-up study. Clinics in Orthopedic Surgery. 2017 Jun 1;9(2):169-76.
61. Cho KJ, Seon JK, Jang WY, et al. Robotic versus conventional primary total knee arthroplasty: clinical and radiological long-term results with a minimum follow-up of ten years. Int Orthop 2019. Jun;43(6):1345-1354.
62. Cotter EJ, Wang J, Illgen RL. Comparative cost analysis of robotic-assisted and jig-based manual primary total knee arthroplasty. The Journal of Knee Surgery. 2022 Jan;35(02):176-84.
63. Sharkey PF, Lichstein PM, Shen C, Tokarski AT, Parvizi J. Why are total knee arthroplasties failing today—has anything changed after 10 years?. The Journal of arthroplasty. 2014 Sep 1;29(9):1774-8.
64. Blyth M, Jones B, MacLean A, Rowe P. Two-year results of a randomized trial of robotic surgical assistance vs manual unicompartmental knee arthroplasty. InAnnual Meeting of the American Association of Hip and Knee Surgeons 2017 Nov.
65. Pearle AD, van der List JP, Lee L, Coon TM, Borus TA, Roche MW. Survivorship and patient satisfaction of robotic-assisted medial unicompartmental knee arthroplasty at a minimum two-year follow-up. The Knee. 2017 Mar 1;24(2):419-28.
66. Pastides P, Nathwani D. The role of newer technologies in knee arthroplasty. Orthopaedics and Trauma. 2017 Feb 1;31(1):47-52.
67. Bellman R. An introduction to artificial intelligence: can computers think?. Thomson Course Technology; 1978.
68. Ahuja AS. The impact of artificial intelligence in medicine on the future role of the physician. PeerJ. 2019 Oct 4;7:e7702.
69. Myers TG, Ramkumar PN, Ricciardi BF, Urish KL, Kipper J, Ketonis C. Artificial intelligence and orthopaedics: an introduction for clinicians. The Journal of bone and joint surgery. American volume. 2020 May 6;102(9):830.
70. Batailler C, Shatrov J, Sappey-Marinier E, Servien E, Parratte S, Lustig S. Artificial intelligence in knee arthroplasty: the current concept of the available clinical applications. Arthroplasty. 2022 Dec;4(1):1-6.
71. Purnomo G, Yeo SJ, Liow MH. Artificial intelligence in arthroplasty. Arthroplasty. 2021 Dec;3(1):1-7.
72. Noonan VK, Lyddiatt A, Ware P, Jaglal SB, Riopelle RJ, Bingham III CO, Figueiredo S, Sawatzky R, Santana M, Bartlett SJ, Ahmed S. Montreal Accord on Patient-Reported Outcomes (PROs) use series–Paper 3: patient-reported outcomes can facilitate shared decision-making and guide self-management. Journal of Clinical Epidemiology. 2017 Sep 1;89:125-35.
73. Paul HY, Wei J, Kim TK, Sair HI, Hui FK, Hager GD, Fritz J, Oni JK. Automated detection & classification of knee arthroplasty using deep learning. The Knee. 2020 Mar 1;27(2):535-42.
74. Shah RF, Bini SA, Martinez AM, Pedoia V, Vail TP. Incremental inputs improve the automated detection of implant loosening using machine-learning algorithms. The Bone & Joint Journal. 2020 Jun;102(6 Supple A):101-6.
75. Kazarian GS, Lawrie CM, Barrack TN, Donaldson MJ, Miller GM, Haddad FS, Barrack RL. The impact of surgeon volume and training status on implant alignment in total knee arthroplasty. JBJS. 2019 Oct 2;101(19):1713-23.
76. Goh GS, Lohre R, Parvizi J, Goel DP. Virtual and augmented reality for surgical training and simulation in knee arthroplasty. Archives of Orthopaedic and Trauma Surgery. 2021 Dec;141(12):2303-12.
77. Chand M, Ramachandran N, Stoyanov D, Lovat L. Robotics, artificial intelligence and distributed ledgers in surgery: data is key!. Techniques in Coloproctology. 2018 Sep;22(9):645-8.
78. Zhou XY, Guo Y, Shen M, Yang GZ. Application of artificial intelligence in surgery. Frontiers of medicine. 2020 Aug;14(4):417- 30.
79. Panesar S, Cagle Y, Chander D, Morey J, Fernandez-Miranda J, Kliot M. Artificial intelligence and the future of surgical robotics. Annals of surgery. 2019 Aug 1;270(2):223-6.
80. Chiang CY, Chen KH, Liu KC, Hsu SJ, Chan CT. Data collection and analysis using wearable sensors for monitoring knee range of motion after total knee arthroplasty. Sensors. 2017 Feb 22;17(2):418.
81. Kang K, Geng Q, Xu HT, Zheng XZ, Dong JT, Li T, Zhao ZG, Gao SJ. Clinical study of a new wearable device for rehabilitation after total knee arthroplasty. Zhonghua yi xue za zhi. 2018 Apr 1;98(15):1162-5.
82. Kline PW, Melanson EL, Sullivan WJ, Blatchford PJ, Miller MJ, Stevens-Lapsley JE, Christiansen CL. Improving physical activity through adjunct telerehabilitation following total knee arthroplasty: randomized controlled trial protocol. Physical therapy. 2019 Jan 1;99(1):37-45.
83. Wang S, Summers RM. Machine learning and radiology. Medical image analysis. 2012 Jul 1;16(5):933-51.
84. Deo RC. Machine learning in medicine. Circulation. 2015 Nov 17;132(20):1920-30.
85. Azuma RT. A survey of augmented reality. Presence: teleoperators & virtual environments. 1997 Aug 1;6(4):355-85.
86. Vávra P, Roman J, Zonča P, Ihnát P, Němec M, Kumar J, Habib N, El-Gendi A. Recent development of augmented reality in surgery: a review. Journal of healthcare engineering. 2017 Aug 21;2017.
87. Chytas D, Malahias MA, Nikolaou VS. Augmented reality in orthopaedics: current state and future directions. Frontiers in Surgery. 2019 Jun 27;6:38.
88. Nikou C, Digioia III AM, Blackwell M, Jaramaz B, Kanade T. Augmented reality imaging technology for orthopaedic surgery. Operative Techniques in Orthopaedics. 2000 Jan 1;10(1):82-6.
89. Blackwell M, Morgan F, DiGioia III AM. Augmented reality and its future in orthopaedics. Clinical Orthopaedics and Related Research (1976-2007). 1998 Sep 1;354:111-22.
90. Navab N, Heining SM, Traub J. Camera augmented mobile C-arm (CAMC): calibration, accuracy study, and clinical applications. IEEE transactions on medical imaging. 2009 May 26;29(7):1412- 23.
91. Fallavollita P, Wang L, Weidert S, Navab N. Augmented reality in orthopaedic interventions and education. InComputational radiology for orthopaedic interventions 2016 (pp. 251-269). Springer, Cham.
92. Fallavollita P, Brand A, Wang L, Euler E, Thaller P, Navab N, Weidert S. An augmented reality C-arm for intraoperative assessment of the mechanical axis: a preclinical study. International Journal of computer-assisted radiology and surgery. 2016 Nov;11(11):2111-7.
93. Pokhrel S, Alsadoon A, Prasad PW, Paul M. A novel augmented reality (AR) scheme for knee replacement surgery by considering cutting error accuracy. The international journal of medical robotics and computer-assisted surgery. 2019 Feb;15(1):e1958.
94. Pokhrel S, Alsadoon A, Prasad PW, Paul M. A novel augmented reality (AR) scheme for knee replacement surgery by considering cutting error accuracy. The international journal of medical robotics and computer-assisted surgery. 2019 Feb;15(1):e1958.
95. Gerrand C. CORR Insights®: can augmented reality be helpful in pelvic bone cancer surgery? An in vitro study. Clinical Orthopaedics and Related Research. 2018 Sep;476(9):1726.


How to Cite this article:  Mukartihal R, Das R, Chandan S, Bhat VGK, Nallabolu B, Sreedhish K, Bharath K S, Patil SS | Technologies in Total Knee Arthroplasty| Journal of Karnataka Orthopaedic Association | January-February 2023; 11(1): 05-12. https://doi.org/10.13107/jkoa.2023.v11i01.057

 


                                          (Abstract Text HTML)      (Download PDF)


Total Knee Arthroplasty in Bilateral Severe Fixed Flexion Deformity: A Case Report

Vol. 10 | Issue 1 | January-February 2022 | Page: 22-25 | Rajesh S, Supreeth D R, Hemant K. Kalyan

DOI:10.13107/jkoa.2022.v10i01.047


Authors: Rajesh S [1], Supreeth D R [1], Hemant K. Kalyan [1]

[1] Department of Orthopaedic Surgery, Manipal Hospital, Bengaluru, Karnataka, India

Address of Correspondence

Dr. Supreeth D R,
Department of Orthopaedic Surgery, Manipal Hospital, Bengaluru, Karnataka, India.
E-mail: 18supreethdr@gmail.com


Abstract


Background: Severe bilateral Fixed flexion deformity of the knees resulting from irreversible joint damage is a disabling complication of long-standing rheumatoid arthritis, associated with loss of ambulatory ability. While Total knee Arthroplasty is an effective treatment for such patients, it poses significant intra-operative technical demands and challenges with post-operative rehabilitation.
Method: We report a case of Severe Fixed flexion deformity of both knees in a 46-year-old male with long-standing rheumatoid arthritis, non-ambulatory since 5 years, treated by sequential total knee arthroplasty.
Results: Treating Severe bilateral Fixed flexion deformities in a non-ambulatory patient by sequential total knee Arthroplasty using standard implants yielded complete deformity correction and pain-free restoration of active range of motion in both knees with stable independent ambulation and complete restoration of lower limb function within 3 months of surgery.
Conclusion: Our case is particularly remarkable for complete restoration of stable, pain-free restoration of ambulation within 3months in a patient with severe bilateral knee fixed flexion deformities who had been non-ambulatory for 5 years preceding his bilateral sequential total knee arthroplasty.
Keywords: Fixed flexion deformity, Total knee arthroplasty, Common peroneal nerve, Rheumatoid arthritis.


References


1. Lu H, Mehdi G, Zhou D, Lin J: Simultaneous bilateral total knee arthroplasty for rheumatoid arthritis. Chin Med J (Engl). 1996, 109 (12): 937- 940.
2. Giles R. Scuderi,Robert B. Bourne,Philip C. Noble,James B. Benjamin,Jess H. Lonner, W. N. Scott:The New knee society Scoring system Clin Orthop Relat Res. 2012 Jan; 470(1): 3–19.
3. Scuderi GR, Kochhar T: Management of flexion contracture in total knee arthroplasty. J Arthroplasty. 2007, 22 (4 Suppl 1): 20-24.
4. Ito J, Koshino T, Okamoto R, Saito T: 15-year follow-up study of total knee arthroplasty in patients with rheumatoid arthritis. J Arthroplasty. 2003, 18 (8): 984-992. DOI,10.1016/S0883-5403(03)00262-6.
5. Abe S, Kohyama K, Yokoyama H, Shigeru M, Yasuhiro T, Natsuko N, Yasuhiro S, Hiroyuki F: Total knee arthroplasty for rheumatoid knee with bilateral, severe flexion contracture: report of three cases. Mod Rheumatol. 2008, 18 (5): 499-506. DOI. 10.1007/s10165-008-0079-3. 9.
6. Massin P, Petit A, Odri G, Ducellier F, Sabatier C, Lautridou C, Cappelli M, Hulet C, Canciani JP, Letenneur J, Burdin P, Sociétéd’orthopédie de l’oues: Total knee arthroplasty in patients with greater than 20 degrees flexion contracture. Orthop Traumatol Surg Res. 2009, 95 (4 Suppl 1): S7-S12.
7. Sarokhan AJ, Scott RD, Thomas WH, Sledge CB, Ewald FC, Cloos DW: Total knee arthroplasty in juvenile rheumatoid arthritis. J Bone Joint Surg Am. 1983, 65 (8): 1071-1080.
8. Knutson K, Leden I, Sturfelt G, Rosen I, Lidgren L: Nerve palsy after knee arthroplasty in patients with rheumatoid arthritis. Scand J Rheumatol. 1983, 12 (3): 201-205. DOI.10.3109/03009748309098533.
9. Omeroglu H, Ozcelik A, Turgut A: Bilateral peroneal nerve palsy after simultaneous bilateral total knee arthroplasty. Report of a case with rheumatoid arthritis. Knee Surg Sports TraumatolArthrosc. 2001, 9 (4): 225-227. DOI, 10.1007/s001670100211.
10. Figgie HE, Brody GA, Inglis AE, Sculco TP, Goldberg VM, Figgie MP: Knee arthrodesis following total knee arthroplasty in rheumatoid arthritis. ClinOrthopRelat Res. 1987, 224: 237-243. 33
11. Smilowicz M: Problems involved in total knee arthroplasty for rheumatoid arthritis patients. OrtopTraumatolRehabil. 2000, 2 (4): 27-31.


How to Cite this article:  Rajesh S, Supreeth DR, Kalyan HK | Total Knee Arthroplasty in Bilateral Severe Fixed Flexion Deformity: A Case Report | Journal of Karnataka Orthopaedic Association | January-February 2022; 10(1): 22-25.

 


 


                                          (Abstract Text HTML)      (Download PDF)


Femoral Arterial Thrombosis Post Total Knee Arthroplasty – A Rare but Dreaded Complication

Volume 7 | Issue 2 | May – August 2019 | Page: 27-30  | Mohan Thadi, Prajwal P. Mane, Vijith Vijay


Authors: Mohan Thadi [1] , Prajwal P. Mane [1] , Vijith Vijay [1].

[1] Department Of Orthopaedics, Amrita Institute Of Medical Sciences, Kochi, Kerla,India.

Address of Correspondence
Dr. Prajwal P. Mane,
Arthroplasty Fellow, Department Of Orthopaedics,
Amrita Institute Of Medical Sciences, Kochi, Kerla, India.
E-mail: pjlmane@gmail.com


Abstract

Acute arterial occlusion, a rare complication after total knee arthroplasty (TKA), reportedly has an incidence of 0.03–0.17% which if undetected can result in limb loss. Cases of acute arterial occlusion following TKA reported in the literature have been mainly attributed to the iatrogenic popliteal artery injury. It is important to understand the mechanism of occlusion as it can lead to limb-threatening ischemia. The use of tourniquet and manipulation of the knee joint in an elderly with arteriosclerosis may induce disruption of an atheromatous plaque that could lead to arterial occlusion. Here, we report a rare case of arterial occlusion ofthe femoral artery post-TKA.
Keywords: atherosclerosis, total knee arthroplasty, acute limb ischaemia post knee replacement, femoral vessel thrombus


References

1. Peyron JG. Osteoarthritis. The epidemiologic viewpoint. Clin Orthop Relat Res 1986;213:13-9.
2. Inomata K, Sekiya I, Otabe K, Nakamura T, Horie M, Koga H, et al. Acute arterial occlusion after total knee arthroplasty: A case report. Clin Case Rep 2017;5:1376-80.
3. Khan S, Salam H, Kessels J. Popliteal artery occlusion after total knee replacement: A vascular team approach for limb salvage. Vasc Dis Manage 2014;11:E200-5.
4. Cho MR, Kim KT, Choi WK. Arterial occlusion after total knee arthroplasty despite minimal invasive technique in aneurysm at popliteal artery: Case report. Medicine (Baltimore) 2018;97:e12719.
5. He R, Yang L. Acute arterial occlusion in the midpiece of femoral artery following total knee arthroplasty: Report of one case. Chin J Traumatol 2016;19:116-8.
6. Mathew A, Abraham BJ, Fischer L, Punnoose E. Popliteal artery thrombosis following total knee arthroplasty managed successfully with percutaneous intervention. BMJ Case Rep 2014;2014:2014206936.
7. Bayne CO, Bayne O, Peterson M, Cain E. Acute arterial thrombosis after bilateral total knee arthroplasty. J Arthroplasty 2008;23:1239.e1-6.
8. Tsujimoto R, Matsumoto T, Takayama K, Kawakami Y, Kamimura M, Matsushita T, et al. Acute popliteal artery occlusion after revision total knee arthroplasty. Case Rep Orthop 2015;2015:672164.
9. Chikkanna JK, Sampath D, Reddy V, Motkuru V. Popliteal artery thrombosis after total knee replacement: An unusual complication. J Clin Diagn Res 2015;9:RJ01-2.
10. Matziolis G, Perka C, Labs K. Acute arterial occlusion after total knee arthroplasty. Arch Orthop Trauma Surg 2004;124:134-6.
11. Junior RF, Amatuzzi MM, Leao PP, Leme LE. Arterial thrombosis in total knee arthroplasty: A literature review. Acta Ortop Bras 2005;13:209-12.
12. Raju IT. Acute limb ischemia secondary to popliteal artery thrombosis following total knee arthroplasty limb salvage by endovascular therapy. Indian J Vasc Endovasc Surg 2018;5:115-8.


How to Cite this article: Thadi M, Mane P P, Vijay V. Femoral Arterial Thrombosis Post Total Knee Arthroplasty – A Rare but Dreaded Complication. Journal of Karnataka Orthopaedic Association May- Aug 2019; 7(2): 27-30.

                                          (Abstract    Full Text HTML)      (Download PDF)


A Comparative Study of the Outcome of Wound Drain versus No Drain in Patients Undergoing Primary Total Knee Arthroplasty

Volume 7 | Issue 2 | May – August 2019 | Page: 8-10  | Srinivasalu Santhanagopal, Manu Jacob Abraham, Joby Kurian, Anoop Pilar


Authors: Srinivasalu Santhanagopal [1], Manu Jacob Abraham [1] , Joby Kurian [1] , Anoop Pilar [1].

[1] Department of Orthopaedics, St Johns Medical College Hospital, Bangalore, India.

Address of Correspondence
Dr. Anoop Pilar,
Department of Orthopaedics,
St Johns Medical College Hospital, Bangalore, India.
Email Id- dranoopp07@gmail.com


Abstract

Total knee arthroplasty (TKA) is a common surgery that reduces pain and significantly improves function and quality of life in patients with knee disorders. Drains in TKR have been used historically for the theoretical benefit of preventing wound hematoma, improving wound healing, and preventing infection. However, literature available to support these beliefs is sparse. The purpose of our study was to assess if a patient undergoing a TKA would benefit from a wound drainage system.
Materials and Methods: Forty-two patients who underwent primary total knee replacement were included in the study; 23 knees in the drained group and 23 knees in the non-drained group. Both the groups had their coagulation workup done and were given deep venous thrombosis prophylaxis as per protocol. A single wound drain system was placed in those patients enrolled in the group with the drains. The outcome was compared between the two groups in terms of blood loss, transfusion requirements, and progression of rehabilitation.
Results: The median drop in Hb was higher in the drained group (2.4 g/dL) compared to the non-drained group (1 g/dL), which statistical analysis was found to be significant (P < 0.001). In the drained group, 65.2% of cases required transfusion, whereas only 21.7% of cases in the non-drained group required transfusions. This was found to be statistically significant (P = 0.01). There was no significant difference in the visual analog score pain scores between the two groups in the post-operative period (P = 0.109). The number of days required to achieve active straight leg raise and knee flexion of 90 degrees was also more in the drained group, which was statistically significant (P < 0.05). The number of days taken for suture removal was found to be higher in the drained group (mean = 12.71) versus the non-drained group (mean = 12.04), and this was found to have statistical significance (P < 0.001).
Conclusions: In our study, the use of a closed drainage system in total knee replacement was associated with higher blood loss postoperatively which essentially translated to an increased requirement of blood transfusions. The progression of wound healing and achievement of post-operative rehabilitation goals were found to be better in the group without the wound drainage system. Although post-operative pain remained to be the same when compared between both the groups.( Kindly review the sentence as it seems to be incomplete.)
Keywords: Drainage, arthroplasty, total knee arthroplasty, blood transfusion, blood loss, wound healing.


References

1. Arden N, Nevitt MC. Osteoarthritis: Epidemiology. Best Pract Res Clin Rheumatol 2006;20:3-25.
2. Ranawat CS. History of total knee replacement. J South Orthop Assoc 2002;11:218-26.
3. Buckwalter JA, Lohmander S. Operative treatment of osteoarthrosis. Current practice and future development. J
Bone Joint Surg Am 1994;76:1405-18.
4. Yoo JH, Chang CB, Kang YG, Kim SJ, Seong SC, Kim TK, et al. Patient expectations of total knee replacement and their association with sociodemographic factors and functional status. J Bone Joint Surg Br 2011;93:337-44.
5. Canty SJ, Shepard GJ, Ryan WG, Banks AJ. Do we practice evidence based medicine with regard to drain usage in knee arthroplasty? Results of a questionnaire of BASK members. Knee 2003;10:385-7.
6. Kohn MD, Sassoon AA, Fernando ND. Classifications in brief: Kellgren-lawrence classification of osteoarthritis. Clin Orthop Relat Res 2016;474:1886-93.
7. Drinkwater CJ, Neil MJ. Optimal timing of wound drain removal following total joint arthroplasty. J Arthroplasty 1995;10:185-9.
8. Reilly TJ, Gradisar IA Jr., Pakan W, Reilly M. The use of postoperative suction drainage in total knee arthroplasty. Clin Orthop Relat Res 1986;208:238-42.
9. Cushner FD, Friedman RJ. Blood loss in total knee arthroplasty. Clin Orthop Relat Res 1991;269:98-101.
10. Esler CN, Blakeway C, Fiddian NJ. The use of a closedsuction drain in total knee arthroplasty. A prospective, randomised study. J Bone Joint Surg Br 2003;85:215-7.
11. Lee QJ, Mak WP, Hau WS, Yeung ST, Wong YC, Wai YL, et al. Short duration and low suction pressure drain versus no drain following total knee replacement. J Orthop Surg (Hong Kong) 2015;23:278-81.


How to Cite this article: Santhanagopal S, Abraham J M, Kurian J, Pilar A. A Comparative Study of the Outcome of Wound Drain versus No Drain in Patients Undergoing Primary Total Knee Arthroplasty.
May-Aug 2019; 7(2): 8-10.

                                          (Abstract    Full Text HTML)      (Download PDF)